CHEM 101B Kinetics – Initial Rates Method for determining Rate Law

29. The reaction

$$2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$$

was studied at -10°C. The following results were obtained where

$$Rate = -\frac{\Delta[Cl_2]}{\Delta t}$$

[NO] ₀ (mol/L)	[Cl ₂] ₀ (mol/L)	Initial Rate (mol/L·min)
0.10	0.10	0.18
0.10	0.20	0.36
0.20	0.20	1.45

- a. What is the rate law?
- b. What is the value of the rate constant?

30. The reaction

$$2I^{-}(aq) + S_2O_8^{2-}(aq) \longrightarrow I_2(aq) + 2SO_4^{2-}(aq)$$

was studied at 25°C. The following results were obtained where

$$Rate = -\frac{\Delta[S_2O_8^{\ 2-}]}{\Delta t}$$

[I ⁻] ₀	[S ₂ O ₈ ²⁻] ₀	Initial Rate
(mol/L)	(mol/L)	(mol/L·s)
0.080 0.040 0.080 0.032 0.060	0.040 0.040 0.020 0.040 0.030	12.5×10^{-6} 6.25×10^{-6} 6.25×10^{-6} 5.00×10^{-6} 7.00×10^{-6}

- a. Determine the rate law.
- b. Calculate a value for the rate constant for each experiment and an average value for the rate constant.

34. The reaction

$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

was studied, and the following data were obtained where

Rate =
$$-\frac{\Delta[O_2]}{\Delta t}$$

[NO] ₀ (molecules/cm ³)	$[O_2]_0$ (molecules/cm ³)	Initial Rate (molecules/cm³ · s)
1.00×10^{18} 3.00×10^{18} 2.50×10^{18}	$1.00 imes 10^{18}$ $1.00 imes 10^{18}$ $2.50 imes 10^{18}$	2.00×10^{16} 1.80×10^{17} 3.13×10^{17}

What would be the initial rate for an experiment where [NO] $_0$ = 6.21 \times 10¹⁸ molecules/cm³ and [O $_2$] $_0$ = 7.36 \times 10¹⁸ molecules/cm³?

35. The rate of the reaction between hemoglobin (Hb) and carbon monoxide (CO) was studied at 20°C. The following data were collected with all concentration units in μmol/L. (A hemoglobin concentration of 2.21 μmol/L is equal to 2.21 × 10⁻⁶ mol/L.)

[Hb] ₀ (µmol/L)	[CO]₀ (µmol/L)	Initial Rate (μmol/L·s)
2.21	1.00	0.619
4.42	1.00	1.24
4.42	3.00	3.71

- Determine the orders of this reaction with respect to Hb and CO.
- b. Determine the rate law.
- c. Calculate the value of the rate constant.
- **d.** What would be the initial rate for an experiment with [Hb]₀ = $3.36 \mu \text{mol/L}$ and [CO]₀ = $2.40 \mu \text{mol/L}$?