CHEM 101B Kinetics – Initial Rates Method for determining Rate Law ## 29. The reaction $$2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$$ was studied at -10°C. The following results were obtained where $$Rate = -\frac{\Delta[Cl_2]}{\Delta t}$$ | [NO] ₀
(mol/L) | [Cl ₂] ₀
(mol/L) | Initial Rate
(mol/L·min) | |------------------------------|--|-----------------------------| | 0.10 | 0.10 | 0.18 | | 0.10 | 0.20 | 0.36 | | 0.20 | 0.20 | 1.45 | - a. What is the rate law? - b. What is the value of the rate constant? ## 30. The reaction $$2I^{-}(aq) + S_2O_8^{2-}(aq) \longrightarrow I_2(aq) + 2SO_4^{2-}(aq)$$ was studied at 25°C. The following results were obtained where $$Rate = -\frac{\Delta[S_2O_8^{\ 2-}]}{\Delta t}$$ | [I ⁻] ₀ | [S ₂ O ₈ ²⁻] ₀ | Initial Rate | |---|---|---| | (mol/L) | (mol/L) | (mol/L·s) | | 0.080
0.040
0.080
0.032
0.060 | 0.040
0.040
0.020
0.040
0.030 | 12.5×10^{-6} 6.25×10^{-6} 6.25×10^{-6} 5.00×10^{-6} 7.00×10^{-6} | - a. Determine the rate law. - b. Calculate a value for the rate constant for each experiment and an average value for the rate constant. ## 34. The reaction $$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$ was studied, and the following data were obtained where Rate = $$-\frac{\Delta[O_2]}{\Delta t}$$ | [NO] ₀
(molecules/cm ³) | $[O_2]_0$ (molecules/cm ³) | Initial Rate
(molecules/cm³ · s) | |---|--|---| | 1.00×10^{18}
3.00×10^{18}
2.50×10^{18} | $1.00 imes 10^{18}$
$1.00 imes 10^{18}$
$2.50 imes 10^{18}$ | 2.00×10^{16} 1.80×10^{17} 3.13×10^{17} | What would be the initial rate for an experiment where [NO] $_0$ = 6.21 \times 10¹⁸ molecules/cm³ and [O $_2$] $_0$ = 7.36 \times 10¹⁸ molecules/cm³? 35. The rate of the reaction between hemoglobin (Hb) and carbon monoxide (CO) was studied at 20°C. The following data were collected with all concentration units in μmol/L. (A hemoglobin concentration of 2.21 μmol/L is equal to 2.21 × 10⁻⁶ mol/L.) | [Hb] ₀
(µmol/L) | [CO]₀
(µmol/L) | Initial Rate
(μmol/L·s) | |-------------------------------|-------------------|----------------------------| | 2.21 | 1.00 | 0.619 | | 4.42 | 1.00 | 1.24 | | 4.42 | 3.00 | 3.71 | - Determine the orders of this reaction with respect to Hb and CO. - b. Determine the rate law. - c. Calculate the value of the rate constant. - **d.** What would be the initial rate for an experiment with [Hb]₀ = $3.36 \mu \text{mol/L}$ and [CO]₀ = $2.40 \mu \text{mol/L}$?